

October 1996 Revised March 1999

74LVX112

Low Voltage Dual J-K Flip-Flops with Preset and Clear

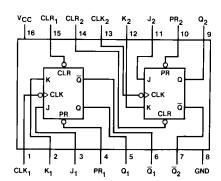
General Description

The LVX112 is a dual J-K Flip-Flop where each flip-flop has independent inputs (J, K, PRESET, CLEAR, and CLOCK) and outputs (Q, \overline{Q}). These devices are edge sensitive and change states synchronously on the negative going transition of the clock pulse. Triggering occurs at a voltage level of the clock and is not directly related to the transition time. Clear and Preset are independent of the clock and are accomplished by a low logic level on the corresponding input. The J and K inputs can change when the clock is in

either state without affecting the flip-flop, provided that they are in the desired state during the recommended setup and hold times relative to the falling edge of the clock.

The inputs tolerate voltages up to 7V allowing the interface of 5V systems to 3V systems.

Features


- Input voltage level translation from 5V-3V
- Ideal for low power/low noise 3.3V applications

Ordering Code:

Order Number	Package Number	Package Description
74LVX112M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
74LVX112SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74LVX112MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

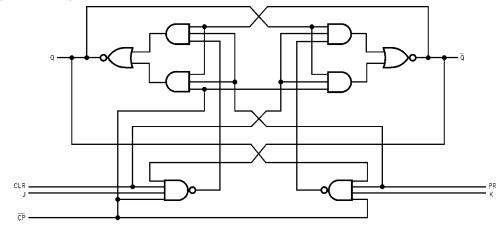
Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Connection Diagram

Pin Descriptions

Pin Names	Description						
J ₁ , J ₂ , K ₁ , K ₂	Data Inputs						
CLK ₁ , CLK ₂	Clock Pulse Inputs (Active Falling edge)						
CLR ₁ , CLR ₂	Direct Clear Inputs (Active LOW)						
PR ₁ , PR ₂	Direct Preset Inputs (Active LOW)						
$Q_1, Q_2, \overline{Q}_1, \overline{Q}_2$							

Truth Table


	Ir	Outputs				
PR	CLR	СР	J	K	Q	Ø
L	Н	Χ	Х	Х	Н	L
Н	L	Χ	Χ	X	L	Н
L	L	Χ	Χ	X	Н	Н
Н	Н	\sim	h	h	\overline{Q}_0	Q_0
Н	Н	\sim	1	h	L	Н
Н	Н	\sim	h	1	Н	L
Н	Н	~	I	I	Q_0	\overline{Q}_0

- H (h) = HIGH Voltage Level L (l) = LOW Voltage Level X = Immaterial \nearrow = HIGH-to-LOW Clock Transition \bigcirc (\bigcirc 0) = Before HIGH-to-LOW Transition of Clock

Lower case letters indicate the state of the referenced input or output one setup time prior to the HIGH-to-LOW clock transition.

Logic Diagram

(One Half Shown)

Absolute Maximum Ratings(Note 1)

Supply Voltage (V_{CC}) -0.5V to +7.0V

DC Input Diode Current (I_{IK})

 $V_I = -0.5V$ -20 mA DC Input Voltage (V_I) -0.5 V to 7 V

DC Output Diode Current (I_{OK})

 $V_0 = -0.5V$ -20 mA $V_O = V_{CC} + 0.5V$ +20 mA

DC Output Voltage (V_O) -0.5V to $V_{CC} + 0.5V$

DC Output Source

or Sink Current (I_O) ±25 mA

DC V_{CC} or Ground Current

 $(I_{CC} \text{ or } I_{GND})$ ±50 mA -65°C to +150°C

Storage Temperature (T_{STG}) 180 mW

Power Dissipation

Recommended Operating Conditions (Note 2)

2.0V to 3.6V Supply Voltage (V_{CC})

0V to 5.5V Input Voltage (V_I) Output Voltage (V_O) $\rm OV$ to $\rm V_{CC}$ -40°C to $+85^{\circ}\text{C}$ Operating Temperature (T_A)

Input Rise and Fall Time $(\Delta_t\!/\!\Delta_v)$ 0 ns/V to 100 ns/V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions

for actual device operation.

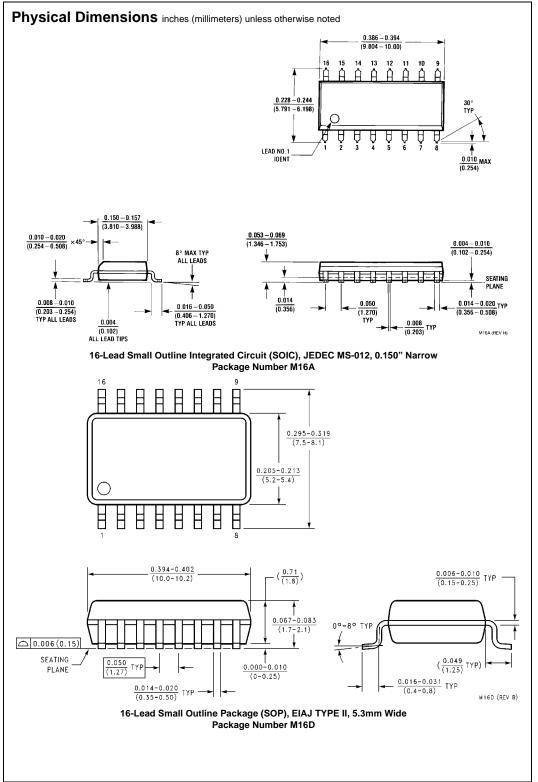
Note 2: Unused inputs must be held HIGH or LOW. They may not float.

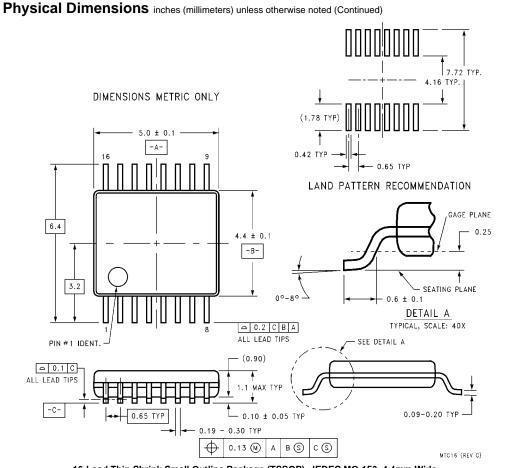
DC Electrical Characteristics

Symbol	Parameter	v _{cc}	T _A = +25°C			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions	
			Min	Тур	Max	Min	Max	Ullits	Conditions	
V _{IH}	HIGH Level	2.0	1.5			1.5				
	Input Voltage	3.0	2.0			2.0		V		
		3.6	2.4			2.4				
V _{IL}	LOW Level	2.0			0.5		0.5			
	Input Voltage	3.0			0.8		0.8	V		
		3.6			0.8		0.8			
V _{OH}	HIGH Level	2.0	1.9	2.0		1.9			$V_{IN} = V_{IL}$ or V_{IH}	$I_{OH} = -50 \mu A$
	Output Voltage	3.0	2.9	3.0		2.9		V		$I_{OH} = -50 \mu A$
		3.0	2.58			2.48				$I_{OH} = -4 \text{ mA}$
V _{OL}	Low Level	2.0		0.0	0.1		0.1		$V_{IN} = V_{IL}$ or V_{IH}	$I_{OL} = 50 \mu A$
	Output Voltage	3.0		0.0	0.1		0.1	V		$I_{OL} = 50 \mu A$
		3.0			0.36		0.44			$I_{OL} = 4 \text{ mA}$
I _{IN}	Input Leakage Current	3.6			±0.1		±1.0	μΑ	$V_{IN} = 5.5V$ or GN	İD
I _{CC}	Quiescent Supply Current	3.6			2.0		20.0	μΑ	V _{IN} = V _{CC} or GND	

AC Electrical Characteristics

Symbol	Parameter	V _{cc}	T _A = +25°C			$T_A = -40^\circ$	C to +85°C	Units	C _L (pF)
Зупівої		(V)	Min	Тур	Max	Min	Max	Ullits	OL (p.)
t _{PLH}	Propagation Delay	2.7		7.5	12.0	1.0	14.2		15
t _{PHL}	CP_n to Q_n or \overline{Q}_n			11.0	16.7	1.0	19.0	ns	50
		3.3 ± 0.3		8.5	11.0	1.0	13.4	115	15
				10.0	15.0	1.0	16.5		50
t _{PLH}	Propagation Delay	2.7		7.0	11.5	1.0	12.3		15
t _{PHL}	PR or CLR to Q_n or \overline{Q}_n			10.1	14.3	1.0	16.5		50
		3.3 ± 0.3		6.7	10.2	1.0	11.7	ns	15
				9.7	13.5	1.0	15.0		50
t _W	Pulse Width	2.7	5.0			5.0		no	
	(CP or CLR or PR)	3.3 ± 0.3	5.0			5.0		ns	
t _S	Setup Time	2.7	5.5			5.5		ns	
	$(J_n \text{ or } K_n \text{ to } CP_n)$	3.3 ± 0.3	5.0			5.0		115	
t _H	Hold Time	2.7	1.0			1.0		ns	
	$(J_n \text{ or } K_n \text{ to } CP_n)$	3.3 ± 0.3	1.0			1.0		115	
t _{REC}	Recovery Time	2.7	6.5			6.5		ns	
	(CLR or PR to CP)	3.3 ± 0.3	6.0			6.0		115	
f _{MAX}	Maximum Clock	2.7	90	140		85			15
	Frequency		85	115		70		MHz	50
		3.3 ± 0.3	110	150		100		IVII IZ	15
			90	120		80			50
t _{OSLH} ,	Output to Output Skew	2.7			1.5		1.5	ns	50
toshl	(Note 3)	3.3			1.5		1.5	110	


Note 3: Parameter guaranteed by design. $t_{OSLH} = |t_{PLHm} - t_{PLHn}|, t_{OSLH} = |t_{PHLm} - t_{PHLn}|$


Capacitance

Symbol	Parameter		$T_A = +25^{\circ}C$		T _A = -40°	Units	
Cyllibol	i arameter	Min	Тур	Max	Min	Max	Oilles
C _{IN}	Input Capacitance		4	10		10	pF
C _{PD}	Power Dissipation		18				pF
1	Capacitance (Note 4)						

Note 4: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation: $I_{CC(opr.)} = \frac{C_{PD} \times V_{CC} \times f_{IN} + I_{CC}}{2 \text{ (per F/F)}}$

16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC16

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com